Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(6): e0303622, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36250868

RESUMO

Infection clusters of multidrug-resistant bacteria increase mortality and entail expensive infection control measures. Whereas whole-genome sequencing (WGS) is the current gold standard to confirm infection clusters, PCR-based assays targeting cluster-specific signatures, such as single nucleotide polymorphisms (SNPs) derived from WGS data, are more suitable to initially screen for cluster isolates within large sample sizes. Here, we evaluated four software tools (SeqSphere+, RUCS, Gegenees, and Find Differential Primers) regarding their efficiency to find SNPs within WGS data sets that were specific for two bacterial monospecies infection clusters but were absent from a WGS reference data set comprising several hundred diverse genotypes of the same bacterial species. Cluster-specific SNPs were subsequently used to establish a probe-based real-time PCR screening assay for in vitro differentiation between cluster and noncluster isolates. SeqSphere+ and RUCS found 2 and 24 SNPs for clusters 1 and 14 and 24 SNPs for cluster 2, respectively. However, some signatures detected by RUCS were not cluster specific. Interestingly, all SNPs identified by SeqSphere+ were also detected by RUCS. In contrast, analyses with the remaining tools either resulted in no SNPs (with Find Differential Primers) or failed (Gegenees). Design of six cluster-specific real-time PCR assays enabled reliable cluster screening in vitro. Our evaluation revealed that SeqSphere+ and RUCS identified cluster-specific SNPs that could be used for large-scale screening in surveillance samples via real-time PCR, thereby complementing WGS efforts. This faster and simplified approach for the surveillance of bacterial clusters will improve infection control measures and will enhance protection of patients and physicians. IMPORTANCE Infection clusters of multidrug-resistant bacteria threaten medical facilities worldwide and cause immense health care costs. In recent years, whole-genome sequencing (WGS) has been increasingly applied to detect and to further control bacterial clusters. However, as WGS is still expensive and time-consuming, its exclusive application for screening and confirmation of bacterial infection clusters contributes to high costs and enhanced turnaround times, which many hospitals cannot afford. Therefore, there is need for alternative methods that can enable further surveillance of bacterial clusters that are initially detected by WGS in a faster and more cost-efficient way. Here, we established a system based on real-time PCR that enables rapid large-scale sample screening for bacterial cluster isolates within 7 days after the initial detection of an infection cluster, thereby complementing WGS efforts. This faster and simplified surveillance of bacterial clusters will improve infection control measures and will enhance protection of patients and physicians.


Assuntos
Infecções Bacterianas , Humanos , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Surtos de Doenças , Genoma Bacteriano , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real
2.
Front Microbiol ; 10: 762, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105651

RESUMO

Salmonella enterica serovar Typhimurium (STM) is exposed to reactive oxygen species (ROS) originating from aerobic respiration, antibiotic treatment, and the oxidative burst occurring inside the Salmonella-containing vacuole (SCV) within host cells. ROS damage cellular compounds, thereby impairing bacterial viability and inducing cell death. Proteins containing iron-sulfur (Fe-S) clusters are particularly sensitive and become non-functional upon oxidation. Comprising five enzymes with Fe-S clusters, the TCA cycle is a pathway most sensitive toward ROS. To test the impact of ROS-mediated metabolic perturbations on bacterial physiology, we analyzed the proteomic and metabolic profile of STM deficient in both cytosolic superoxide dismutases (ΔsodAB). Incapable of detoxifying superoxide anions (SOA), endogenously generated SOA accumulate during growth. ΔsodAB showed reduced abundance of aconitases, leading to a metabolic profile similar to that of an aconitase-deficient strain (ΔacnAB). Furthermore, we determined a decreased expression of acnA in STM ΔsodAB. While intracellular proliferation in RAW264.7 macrophages and survival of methyl viologen treatment were not reduced for STM ΔacnAB, proteomic profiling revealed enhanced stress response. We conclude that ROS-mediated reduced expression and damage of aconitase does not impair bacterial viability or virulence, but might increase ROS amounts in STM, which reinforces the bactericidal effects of antibiotic treatment and immune responses of the host.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...